Uniformization of jungian local domains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inseparable Local Uniformization

The aim of this paper is to prove that an algebraic variety over a field can be desingularized locally along a valuation after a purely inseparable alteration. Zariski was first to study the problem of desingularizing algebraic varieties along valuations. He called this problem local uniformization of valuations and observed that it should be considered as the local part of the desingularizatio...

متن کامل

On Local Uniformization in Arbitrary Characteristic

We prove that every place of an algebraic function eld of arbitrary characteristic admits a local uniformization in a nite extension of the function eld. We give a valuation theoretical description of these extensions; in certain cases, they can be found in the henselization of the function eld. For places satisfying the Abhyankar equality and for discrete rational places, no extension is neede...

متن کامل

A Proof of the Uniformization Theorem for Arbitrary Plane Domains

We present a simple constructive proof of the Uniformization Theorem which works for plane domains. The proof is a combination of covering space theory and Koebe's constructive proof of the Riemann mapping theorem, and the resulting algorithm can be used to estimate the Poincar6 metric for the domain.

متن کامل

Evolutionary Jungian Psychology

In this article I will discuss an important convergence taking place between Jungian psychology, evolutionary psychology, and neuroscience. I will assume that I do not need to define Jungian psychology or neuroscience for this audience, and many readers will be acquainted with recent developments in neurotheology, which seeks to understand the neurological bases of spiritual experiences and pra...

متن کامل

Abhyankar places admit local uniformization in any characteristic

We prove that every place P of an algebraic function field F |K of arbitrary characteristic admits local uniformization, provided that the sum of the rational rank of its value group and the transcendence degree of its residue field FP over K is equal to the transcendence degree of F |K, and the extension FP |K is separable. We generalize this result to the case where P dominates a regular loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 1965

ISSN: 0025-5831,1432-1807

DOI: 10.1007/bf01371613